

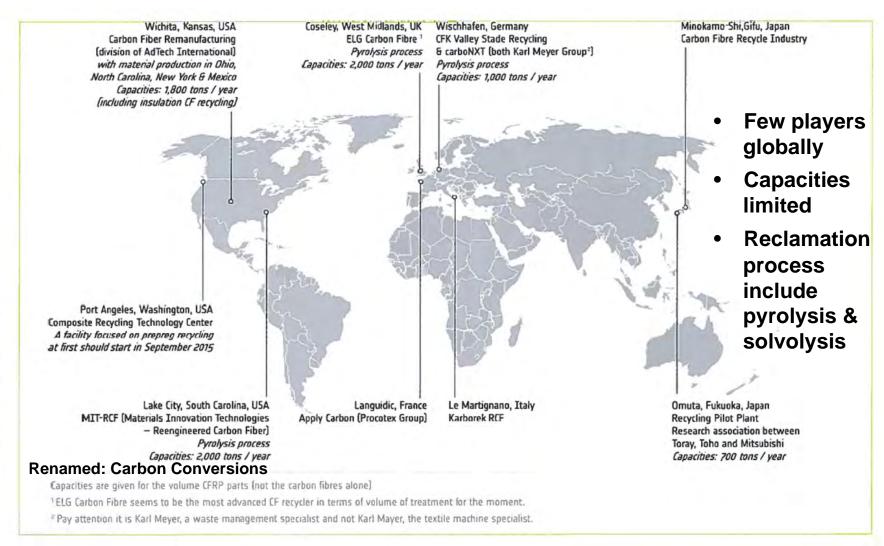
Making Carbon Fiber Composites Circular: CRTC Approach to Composites Recycling

Presented by: Jennifer States

Contributors: Bob Larsen, Geoff Wood, Ryan McIntosh

Composites Recycling Technology Center

Background


- In North America: estimated 29 M lbs. (~13,200 MT) of carbon fiber landfilled per year
- In Washington: estimated 2 M lbs. (~900 MT) of carbon fiber landfilled per year
- Majority (in WA) is pre-preg, primarily aerospace production scrap
 - Secondary amount is cured production trim
 - Some pre-preg scrap has to be oven cured prior to landfill
 - Regulations vary based on constituents in resin system
 - Adds cost/time burden on composite manufacturers

Carbon Fiber Recycling Landscape

Carbon Fibers: History Players and Forecast to 2020, JEC Group Strategic Study, 1st Edition 2015

CRTC's Vision, Mission, Principles

Vision:

Pioneering product development to realize the full potential of composite recycling

Mission:

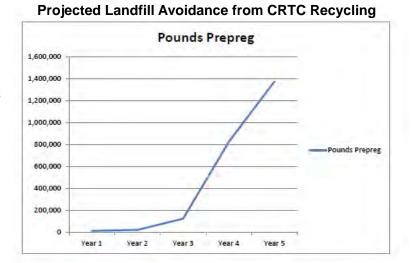
 To lead and grow a composite recycling industry that fully diverts Washington State's carbon fiber scrap into value-added products

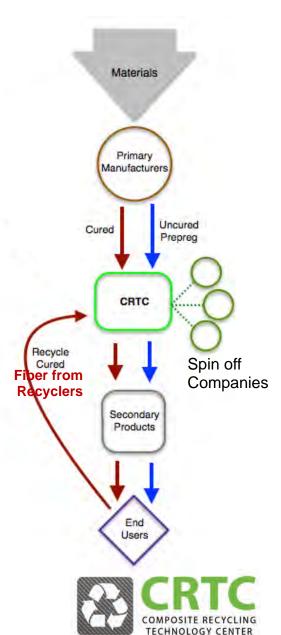
The following **Guiding Principles** shape CRTC's decisions:

- Economic: Enable the expansion of the advanced manufacturing industry through research and development for conversion of carbon fiber scrap into value-added products.
- Environment: Reduce the amount of composite scrap being landfilled through re-use in new applications with reduced energy and environmental footprints
- Education: Support the training of a workforce prepared for and accomplished in the skills required by the composite recycling industry

Location – Space to Start-up and Room to Grow

Status/Scale of Effort


- Interim R&D facility: moved in presses and tooling/prototyping equipment to start development in January 2106
- New 25,000 s.f. facility under construction
 - Built-in ovens, freezers, finishing booths, etc.
 - 75,000 pound pre-preg freezer capacity
 - High temperature ovens (800°F capable)
 - High-speed compression molding presses
 - Complete steel 4-axis CNC tooling capability inhouse
 - Design/analysis capabilities, collaborative testing with WSU
 - Pursuing UW collaboration for expanding capabilities; offering research & training opportunities at CRTC
- Co-location with Peninsula College's Advanced Manufacturing - Composites Technology Program
- Separate production space and multiple laboratory spaces


CRTC Approach

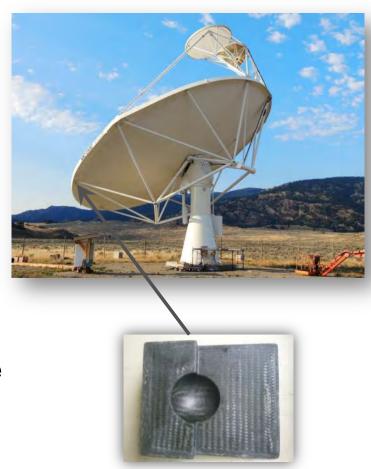
- Create demand for reclaimed materials via market pull from highvalue products
- Select products to match availability of scrap, achievable properties, and quantity of materials
- Develop process science for converting autoclave cure cycles to press-based rapid cure cycles
- Explore additive manufacturing
 - Chopping to the format planned and building net preforms for compression molding as a form of "bulk" additive manufacturing
- Develop design property data to reflect "combined" materials properties and new cure cycles
- Work with companies to advance market-based applications and support these with product demonstration, materials, and process technologies

Value Proposition for Recycled Carbon Fiber (rCF)

- CRTC will develop manufacturing and product sales and create confidence in using recycled pre-preg
- CRTC's early rCF manufacturing and development efforts will generate property databases and process knowledge that feeds new applications
- CRTC success will attract increased R&D for new materials and processing technologies, such as Materials Genome Initiative
- Composite recycling needs "market pull" to improve reclamation business case
- CRTC will initiate with uncured carbon pre-preg Phase II will incorporate "recovered" dry fiber from Recyclers

Transforming "Waste" Streams into Value Streams

- Examining the Manufacturing Opportunity with Pre-preg Scrap
 - Selected applications in Paddlesports, Snow-sports, Fishing, and Cycling
 - Only considered applications that can use the recovered form of materials
 - Range of as-manufactured costing examined on a unit weight basis
 - Looked at cost within manufacturing operations
 - Backed out all mark-ups and distribution costs plus SG&A and profit
- Range is \$75/pound to \$192/pound. Average across the selected applications was \$139/pound
 - This figure represents labor, materials, consumables, amortization & production management expenses
- 2M lbs. total carbon fiber scrap currently in WA:
 - Estimate 60% useful materials from landfilled scrap or ~1.2 M lbs/year
 - \$166.8 M in direct manufacturing opportunity (converted to consumer goods)
 - Or approximately 1,100 direct jobs; plus 1,400 indirect jobs =
 Total 2,500 jobs
 - Equal to \$670 M retail sales volume


Recycled Carbon Fiber Case Study (Actual Project)

Large Radio Telescope Mount Support Components

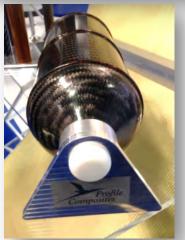
- Is virgin, continuous fiber required?
 - What are the design drivers?
- What process should be used?
 - What are the molding requirements?
 - What are the masses/sizes?
 - Can process/tooling accommodate cure induced dimension changes?

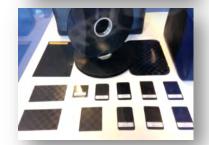
Decision:

- Dish rim connectors utilize hybrid of recycled discontinuous carbon fiber (spool ends), and virgin BimaX[™] surface braid (for hole drilling stability)
 - Fabric construction would have been 168 plies and ~84 ply drops on 4 faces
- Metered infusion epoxy (low-exotherm), compression molded at ~300 psi, 160°F

Carbon Fiber: Applications and Innovation

Automotive
Recreational
Clean Energy
Non-structural
Aerospace





Seeking Partners to Realize CRTC Vision

Industry Partnerships: Product design, development and sales

- Direct sales transitioning into private label products for established market players
- Enter supply chain:
 - Partnerships enable continued growth in CF industries into mainstream, highvolume manufacturing applications
- Bridging the gap between lab scale and large production

R&D/D Partnerships

- Innovation tech center for cutting edge research
- Interested in teaming with partners that have complementary needs and goals
 - Explore potential of low cost rCF feedstocks for new materials
 - Process improvements for scale up
- Engineer in Residence Program

Educational Partnerships

- Peninsula College space for classes, offices and laboratories
 - Recycling certification program first in state
- Collaboration with WSU and other universities
- Hands on research and production training for Graduate Students

Conclusions

- Carbon fiber is a small business segment relative to other structural materials, and recycling is one barrier to achieving commodity scale
- Addressing recycling as part of high-volume production development will lower overall costs, and increase demand for CF materials
- CRTC is leading the way in closing the circle for composite recycling
- High performance characteristics of CF can be applied in new applications through use of low cost rCF
- CRTC focus on product development optimizes value of rCF material stream
- CRTC wants to partner and collaborate to grow the recycled carbon fiber industry
- rCF is part of the paradigm shift called for in the Materials Genome Initiative

Join Us:

Jennifer States

Director of Business Development
Composite Recycling Technology Center
Cell: 509-554-1037
jstates@compositerecycling.org
www.compositerecycling.org